

Universitas Brawijaya

Faculty of Mathematics and Natural Sciences

Department of Statistics / Bachelor Statistics Study Programme

*	Statistics / Dachelor Statistics Study 1 rogramme		
Module Handbook			
Module Name:	Simulation Methods (MAS62321)		
Module Level:	Bachelor		
Abbreviation, if applicable:	-		
Sub-heading, if applicable:	-		
Courses included in the	-		
module, if applicable:			
Semester/term:	4th / Second Year		
Module Coordinator(s):	Rahma Fitriani, S.Si., M.Sc. PhD		
Lecturer(s):	Rahma Fitriani, S.Si., M.Sc. PhD		
	Darmanto, S.Si., M.Si		
Language:	Indonesian		
Classification within the	Elective Course		
curriculum:			
Teaching format / class per	2×50 minutes		
week during semester:			
Workload:	1.67 hours lectures, 2 hours structural activities, 2 hours		
	individual studies, 16 weeks per semester, and total 90.67		
	hours per semester 3 ECTS		
Credit Points:	2		
Requirements:	Introduction to Probability Theory (MAS62111), Basics of		
T . 1 /	programming (MAS61131)		
Learning goals /	General Competence (Knowledge):		
competencies:	ILO1 The students are able to master basic scientific concepts and statistical analysis methods applied on		
	computing, social science, humanities, economics,		
	industry and life science.		
	ILO2 The students are able to arrange and/or choose an		
	efficient data collection/ data generated design that		
	applies in surveys, experiments or simulations.		
	ILO3 The students are able to manage, analyze, and		
	complete the real case using statistical method on		
	computing, social humanities, economics, industry		
	and life science that helped by software, then present		
	and communicate the results.		
	ILO4 The students are able to master at least two statistical		
	softwares, including based on open source.		
	ILO5 The students are able to apply logical, critical,		
	systematic, and innovative thinking independently		

		when applied to science and technology that contain humanities values, based on scientific principles,
		procedures and ethics with excellent and measurable results.
	ILO6	The students are able to take appropriate decisions to
	1200	solve the problems expertly, based on the information
		and data analysis.
	ILO7	The students are able to improve and develop a job
		networks, then supervise and evaluate the team's
		performance they lead.
	ILO8	The students are able to apply and internalize the spirit
		of independence, struggle, entrepreneurship, based on
		values, norms, and academic ethics of Pancasila in all
		aspects of life.
	Specif	ic Competence:
	M1	Students are able to understand the monte carlo
		simulation concept, deterministic simulation models
		and stochastic simulation models (ILO1, ILO5)
	M2	Students are able to understand the concept of
		generating random numbers that have discrete or
		continuous distribution (ILO1, ILO2, ILO5)
	M3	Students are able to apply the concept of simulation
		with the help of software (R) (ILO2, ILO4, ILO5)
	M4	Students are able to apply simulation concepts to
		determine solutions to simple queuing models (ILO1,
		ILO2, ILO3, ILO4, ILO5)
	M5	Students are able to apply simulation concepts to
		determine solutions to simple queuing models (ILO1,
		ILO2, ILO3, ILO4, ILO5)
	M6	Students are able to understand the properties of the
		simulation output statistically (ILO3, ILO4, ILO6)
	M7	Students are able to apply simulation concepts to
		statistical models (ILO1, ILO2)
	M8	Students are able to convey the results of their
		analysis in writing or verbally, in the form of
		individual or group assignments (ILO7, ILO8)
Contents:	1	Basic Terminology of Monte Carlo Simulation,
		Deterministic Simulation Models and Stochastic
		Simulation Models
	2	The concept of generating random numbers that
		spread discrete or continuous
	3	Simulation for determining the solution to the queuing
	3	Simulation for determining the solution to the queuing

	model	
	4 Simulation for determining the solution in the	
	preparation model	
	5 The statistical output properties of the simulation	
	6 Simulation on statistical models	
Soft skill attribute:	Responsible, independently, and discipline	
Study/exam achievement:	Final score (NA) is calculated as follow: 20% Assignments,	
	12% Post Test, 15% Quizzes, 26% Midterm Exam, 26% Final	
	Exam.	
	Final index is defined as follow:	
	A :> 80 - 100	
	B+ :> 75 - 80	
	B :> 69 - 75	
	C+ :> 60 - 69	
	C :> $55 - 60$	
	D+ $:> 50 - 55$	
	D :> 44 - 50	
	E : 0 - 44	
Forms of media:	-	
Learning methods:	Lecture and assessment	
Literature:	Main:	
	Winston, W.L. 2004. Operation Research: Applications and	
	Algorithms. 4th ed. Thomson Brooks/Cole. Southbank, Vic	
	Support:	
	1. Morgan, B.J.T. 1984. Elements of simulation	
	2. Law, A.M. and Kelton, W. 1991. Simulation Modelling and	
	Analysis	
	3. Kakiay, T.J. 2004. Pengantar Sistem Simulasi	
Notes:		