

Universitas Brawijaya Faculty of Mathematics and Natural Sciences Department of Statistics / Bachelor Statistics Study Programme

Module Handbook			
Module Name:	Introduction to Regression Analysis (MAS62122)		
Module Level:	Bachelor		
Abbreviation, if applicable:	-		
Sub-heading, if applicable:	-		
Courses included in the	-		
module, if applicable:			
Semester/term:	2nd / First Year		
Module Coordinator(s):	Prof. Ni Wayan Surya Wardhani, Ir.,M.S, Dr.		
Lecturer(s):	Prof. Ni Wayan Surya Wardhani, Ir.,M.S, Dr.		
	Achma	d Efendi, S.Si., M.Sc., Ph.D	
Language:	Indonesian		
Classification within the	Compulsory course		
curriculum:			
Teaching format / class	3 hours lectures (50 min per hour lecture)		
hours per week during			
semester:			
Teaching format / class per	3×50 minutes		
week during semester:			
Workload:	2.5 hours lectures, 3 hours structural activities, 3 hours		
	individu	ual studies, 16 weeks per semester, and total 136 hours	
	per sem	nester 4.5 ECTS	
Requirements:	Matrix	and vector spaces (MAS62113), Statistics Method I	
	(MAS6	1121)	
Learning goals /	General Competence (Knowledge):		
competencies:	ILO1	The students are able to master basic scientific	
		concepts and statistical analysis methods applied on	
		computing, social science, humanities, economics,	
		industry and life science.	
	ILO2	The students are able to arrange and/or choose an	
		efficient data collection/ data generated design that	
		applies in surveys, experiments or simulations.	
	ILO3	The students are able to manage, analyze, and	
		complete the real case using statistical method on	
		computing, social humanities, economics, industry	
		and life science that helped by software, then present	
		and communicate the results.	

	ILO4	The students are able to master at least two statistical
		softwares, including based on open source.
	ILO5	The students are able to apply logical, critical,
		systematic, and innovative thinking independently
		when applied to science and technology that contain
		humanities values, based on scientific principles,
		procedures and ethics with excellent and measurable
		results.
	ILO7	The students are able to improve and develop a job
		networks, then supervise and evaluate the team's
		performance they lead.
	ILO8	The students are able to apply and internalize the
		spirit of independence, struggle, entrepreneurship,
		based on values, norms, and academic ethics of
		Pancasila in all aspects of life.
	Specifi	c Competence:
	M1	Students understand various problems that can be
		simplified by regression modeling (ILO3, ILO1,
		ILO5, ILO7, ILO8).
	M2	Students understand and understand the process of
		building a regression model (ILO3, ILO4, ILO7,
		ILO8).
	M3	Students are able to apply regression analysis in
		various fields and interpret the results (ILO3, ILO1,
		ILO4, ILO5, ILO7, ILO8).
	M4	Students are able to detect violations of the
		assumptions that underlie regression analysis (ILO5,
		ILO3, ILO4, ILO8).
	M5	Students are able to convey the results of their
		modeling and analysis in writing or verbally, in the
		form of group reports (ILO3, ILO1, ILO4, ILO5,
<u> </u>		
Contents:	1	Basics principles of regression and correlation and
		their function to give solution of problems
	2	Parameter estimation and testing of simple regression
	3	The significance of regression trough ANOVA
	4	Forming regression model with more than two
		predictors using matrix approach
	5	Assumptions of regression analysis
	6	Outlier detection and handling
	7	Multiple regression: parameter estimation and testing

	8 Choosing the best regression model		
Soft skill attribute:	Responsible, independently, and discipline		
Study/exam achievement:	Final score (NA) is calculated as follow: 10% Tutorial Class,		
	20% Assignments, 45% Quizzes, 25% Midterm Exam.		
	Final index is defined as follow:		
	A $:> 80 - 100$		
	B+ :> 75 - 80		
	B $:> 69 - 75$		
	C+ :> 60 - 69		
	C $:> 55 - 60$		
	D+ :> 50 - 55		
	D $:> 44 - 50$		
	E : $0 - 44$		
Forms of media:	Excel, Genstat, Minitab, LCD Projector, Whiteboard		
Learning methods:	Lecture, assessments, and discussion		
Literature:	Main:		
	1. Montgomery, D.C., 1992. Introduction to Linear		
	Regression Analysis, Willey, New York.		
	Support:		
	1. Myers, R.H. 1990. Classical and Modern Regression with		
	Applications. PWS-KENT, Boston, Massachusetts.		
	2. Draper, N.R. and Smith H., 1998. Applied Regression		
	Analysis 3rd Edition, John Willey, New York.		
	3. Chatterjee, S and Simonoff, J. S. 2013. Handbook of		
	Regression Analysis, Willey, New Jersey.		
Notes:			