

Universitas Brawijaya Faculty of Mathematics and Natural Sciences Department of Statistics / Bachelor Statistics Study Programme

	Stausues / Dachelor Stausues Study Programme		
Module Handbook			
Module Name:	Analysis of Reliability (MAS61333)		
Module Level:	Bachelor		
Abbreviation, if applicable:	-		
Sub-heading, if applicable:	-		
Courses included in the	-		
module, if applicable:			
Semester/term:	5th / Third Year		
Module Coordinator(s):	Dr. Adji Achmad Rinaldo Fernandes, S.Si.,M.Sc		
Lecturer(s):	Dr. Adji Achmad Rinaldo Fernandes, S.Si.,M.Sc		
Language:	Indonesian		
Classification within the	Elective Course		
curriculum:			
Teaching format / class per	3×50 minutes		
week during semester:			
Workload:	2.5 hours lectures, 3 hours structural activities, 3 hours		
	individual studies, 16 weeks per semester, and total 136 hou	urs	
Credit Points:	per semester 4.5 ECTS		
Requirements:	3 Letre hertien to Decreasion Analysis (MAS(2122)		
Requirements.	Introduction to Regression Analysis (MAS62122), Mathematical Statistics (MAS62115)		
Learning goals /	General Competence (Knowledge):		
competencies:	ILO1 The students are able to master basic scientific		
1	concepts and statistical analysis methods applied or	n	
	computing, social science, humanities, economics,	.1	
	industry and life science.		
	ILO3 The students are able to manage, analyze, and		
	complete the real case using statistical method on		
	computing, social humanities, economics, industry		
	and life science that helped by software, then present	nt	
	and communicate the results.		
	ILO4 The students are able to master at least two statistic	al	
	softwares, including based on open source.		
	ILO5 The students are able to apply logical, critical,		
	systematic, and innovative thinking independently		
	when applied to science and technology that contain	n	
	humanities values, based on scientific principles,		
	procedures and ethics with excellent and measurabl	le	
	results.		

	ILO7	The students are able to improve and develop a job
	ILO/	The students are able to improve and develop a job
		networks, then supervise and evaluate the team's
	ПОО	performance they lead.
	ILO8	The students are able to apply and internalize the
		spirit of independence, struggle, entrepreneurship,
		based on values, norms, and academic ethics of
		Pancasila in all aspects of life.
		ic Competence:
	M1	Students are able to understand the definition of
		Hazard function, Mean Time to Failure, Mean Time
		Between Failure, distribution of life time in
		reliability. (ILO3, ILO1, ILO5)
	M2	Students are able to determine and interpret reliability
		of both parametric and non-parametric approach.
		(ILO3, ILO1, ILO5)
	M3	Students are able to plan, apply, and evaluate
		reliability system and interpret the output. (ILO3,
		ILO1, ILO5)
	M4	Students are able to present the output of reliability
		analysis either through manual process or using
		software, in both written or oral, in a form of
		individual or group assignment. (ILO3, ILO4, ILO5,
		ILO7, ILO8)
	M5	Students are able to apply warranty analysis either
		through manual process or using software, present the
		modeling output and its analysis in writing or
		verbally, in a form of individual or group assignment.
		(ILO3, ILO4, ILO5, ILO7, ILO8
Contents:	1	Definition of reliability, hazard function, density
		function, Mean Time To Failure, Mean Time,
		Between Failure
	2	Distribution of life time (Exponential, Weibull,
		Rayleigh, Normal and Lognormal) in reliability
	3	Stationary Stochastic model
	4	Non parametric reliability
	5	Parametric reliability
	6	Reliability system that is not complex and complex
		and its evaluation
	7	Warranty analysis in reliability
Soft skill attribute:	-	isible, independently, and discipline
Study/exam achievement:	-	core (NA) is calculated as follow: 40% Assignments,
		uizzes, 15% Midterm Exam, 25% Final Exam
		ndex is defined as follow:

	A :> 80 - 100
	B+ : > 75 - 80
	B :> 69 - 75
	C+ :> 60 - 69
	C :> 55 - 60
	D+ :> 50 - 55
	D :> 44 - 50
	E : 0 - 44
Forms of media:	Laptop, LCD projector, whiteboard
Learning methods:	Lecture, assessments, and discussion
Literature:	Main:
	1. Elsayed, A. 1996. Reliability Engineering, Addison
	Wesley, Longman, Inc.
	Support:
	1. Barlow, R.E., dan Proschan, F. 1965. Mathematical Theory
	of Reliability, Wiley, New York.
	2. Crowder, M.I., Kimber, A.C., Smith, R.L., dan Swetting,
	T.J. 1991. Statistical Analysis of Reliability Data. Chapman
	and Hall, London.
	3. Lewis, E. 1987. Introduction to Reliability Engineering,
	Wiley.
	4. Mc Cormick. 1981. Reliability and Risk Analysis,
	Academic Press, New York, 1981.
	5. Sinha, S.K., dan Kale, B.K. 1980. Life Testing and
	Reliability Estimation, Wiley, Eastern.
Notes:	