

Universitas Brawijaya Faculty of Mathematics and Natural Sciences Department of Statistics / Bachelor Statistics Study Programme

Module Handbook			
Module Name:	Actuarial Science (MAS61332)		
Module Level:	Bachelor		
Abbreviation, if applicable:	-		
Sub-heading, if applicable:	-		
Courses included in the	-		
module, if applicable:			
Semester/term:	3rd / Second Year		
Module Coordinator(s):	Darmanto, S.Si., M.Si.		
Lecturer(s):	Darmanto, S.Si., M.Si.		
Language:	Indonesian		
Classification within the	Elective Course		
curriculum:			
Teaching format / class per	3×50 minutes		
week during semester:			
Workload:	2.5 hours lectures, 3 hours structural activities, 3 hours		
	individual studies, 16 weeks per semester, and total 136 hours		
	per semester 4.5 ECTS		
Credit Points:	3		
Requirements:	Introduction to Probability Theory (MAS62111)		
Learning goals /	General Competence (Knowledge):		
competencies:	ILO1 The students are able to master basic scientific		
	concepts and statistical analysis methods applied on		
	computing, social science, humanities, economics,		
	industry and life science.		
	ILO3 The students are able to manage, analyze, and		
	complete the real case using statistical method on		
	computing, social humanities, economics, industry		
	and life science that helped by software, then present		
	and communicate the results.		
	ILO5 The students are able to apply logical, critical,		
	systematic, and innovative thinking independently		
	when applied to science and technology that contain		
	humanities values, based on scientific principles,		
	procedures and ethics with excellent and measurable		
	results.		
	ILO6 The students are able to take appropriate decisions to		
	solve the problems expertly, based on the information		
	and data analysis.		

	ILO8	The students are able to apply and internalize the spirit		
		of independence, struggle, entrepreneurship, based on		
		values, norms, and academic ethics of Pancasila in all		
		aspects of life.		
	Specific Competence:			
	M1	Students understand the fundamental concept of		
		actuarial science, general purpose of Insurance, the		
		basics of probability theory, expected value and the		
		application in actuarial value calculation. (ILO1,		
		ILO3, ILO5, ILO8)		
	M2	Students understand the concept of mortality table		
		construction: calculation of each columns and the		
		symbols. (ILO1, ILO3, ILO5, ILO8)		
	M3	Students understand the definition of annuity,		
		correlation between annuity and interest rate, cash		
		value and final value of annuity. (ILO1, ILO3, ILO5,		
		ILO6, ILO8)		
	M4	Students understand the concept of calculating		
		actuarial value (premiums, compensation, and		
		premium reserves) on various types of Life Insurance.		
~		(ILO1, ILO3, ILO5, ILO6, ILO8)		
Contents:	1	General review of Actuarial Science and Insurance		
	2	Probability theory and expected value overview, and		
		the application in actuarial		
	3	Construct mortality table: symbol, structure, and the		
	4	like.		
	4	Annuity		
	5	Life Insurance: kinds and premium calculation		
	6	Premium reserves and adjusted premium reserves		
	7	Redemption value		
Soft skill attribute:	Respor	sible, independently, and discipline		
Study/exam achievement:	Final se	core (NA) is calculated as follow: 5% Attitude, 20%		
	Assign	ments, 20% Quizzes, 27.5% Midterm Exam, 27.5%		
	Final E	xam		
	Final in	ndex is defined as follow:		
	Α	:> 80 - 100		
	B+	:>75-80		
	В	:>69-75		
	C+	:>60-69		
	C	:>55-60		
	D+	: > 50 - 55		
	D	: > 44 - 50		

	E : 0 - 44		
Forms of media:	LCD and Projector		
Learning methods:	Lecture, assessment, and group discussion		
Literature:	Main:		
	1. Sembiring, R. K. 1986. Asuransi I. Karunika, Jakarta.		
	2. Sembiring, R. K. 1986. Asuransi II. Karunika, Jakarta.		
	Support:		
	1. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A.,		
	and Nesbit, C.J. 1997. Actuarial Mathematics. 2 nd Edition.		
	Casualty Actuarial Society		
	2. Jordan Jr, C.W., 1967, Life Contingencies: The Society of		
	Actuaries, Chicago, Illionis		
	3. Larson, R.E & Gaumnitz, E., 1962, Live Insurance		
	Mathematic, John Willey & Sons, Inc		
	4. Promislow, S. D. 2006. Fundamental of Actuarial		
	Mathematics. John Wiley and Sons, New Jersey.		
	5. Futami, Takashi. 1993. Matematika Asuransi Jiwa: Bagian		
	I. Incoporated Foundation, Tokyo.		
	6. Futami, Takashi. 1993. Matematika Asuransi Jiwa: Bagian		
	II. Incoporated Foundation, Tokyo.		
Notes:			